SOLUTION OF INVERSE PROBLEMS WITH AN UNKNOWN
MODEL OF THE PROCESS

M. R. Romanovskii UDC 536.24:518.62

A method is proposed for identifying systems with distributed parameters in the case of no a
priori information about the form of an adequate model of the process being studied.

The development of processing methods that would permit taking account of physical features of the pro-
cess under investigation is urgent for the theory of interpretation of a thermophysical experiment. Conse-
quently, the mathematical modeling of the results of an experiment by using inverse problems [1-4] in which
it is required to restore its parameters by certain observations on the solution of a given equation, is of in-
terest. The distinction of the approach based on solving inverse problems from other methods of interpreta-
tion [5-7] is the passage from mathematical models, of regression type, say, in which the conceptual structure
and the functional connections of the effective factors are not reflected, to models in the form of boundary value
problems of mathematical physics, say, that contain information about the nature of the processes being ob-
served. Combining experiment with the solution of boundary value problems permits taking account of the
physical features of the object and to perform modeling in which not experimental data, and not data stacked
within the framework of the model selected, but the model itself will be subjected to formalization.

The theory of inverse problems developed at this time requires the assignment of an adequatel model of
the process being investigated. On the basis of the general theory of incorrectly posed problems [8, 9], it
turns out to be possible to eliminate the postulation of the final form of the mathematical model by setting a cer-
tain one of its set in conformity with the process under consideration. Indeed, in practice the necessary in-
formation about the object under investigation is often available in the form of the assumed class of mathema-
tical models by which the effective factors their structure and interrvelation are reflected. Then a solution can
be sought, which satisfies the boundary value problem under consideration on the one hand, and is consistent
with given observations on the other. The degree of consistency in this case is the criterion by which satisfac-
tion of the necessary conditions for adequacy between the model and the process is judged. The passage to an~
other model should evidently be pursued when consistency is not satisfied. The structure and significance of
the effective factors can be clarified as a result of a sequential choice and comparative analysis of the solu-~
tions obtained.

From the viewpoint of systems theory [10], formulation of inverse problems in a set of given models
permits simultaneous structural and parametric identification of the object. The requirement of sequential
solution of a whole series of inverse problems with the utilization of the identical initial data distinguishes it
from other formulations.

As is known [8, 9], the initial hypothesis for the solution of incorrect problems is the narrowing of the
total class of possible states to boundaries that do not spoil consistency with the initial data. This principle
should also be used in selecting the sequence of inverse problem formulations. Depending on the quantity
of initial information, the necessary narrowing can be performed on the basis of different methods by making
a selection, in particular, between inductive or deductive modeling,

In the case of giving incomplete a priori information about the form of the model, the functional prop-
erties of its parameters, and the limited quantity of samples of observations, inductive modeling has definite
advantages. The initial selection of a particular model based on the reflection of the most essential aspects of
the process under investigation is a significant constraint on the class of possible staies of the object which
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cannot, at the same time, spoil the adequacy conditions. In the opposite case, when the model turns out to be
inadequate, the utilization of particular forms should result in unsatisfactory matching with the observations.
Hence, the passage from the particular to the volume, which is a result of the inadequacy of the model or the
insufficiency of the functional description of the properties of the parameters desired, can eliminate finding
arbitrary solutions by which the given sample of observations is described.

If a sufficient quantity of information is given about the form of the adequate model, the properties of its
parameters, and the corresponding amount of observations by which identifiability of the selected model is as~
sured, the utilization of deductive modeling turns out to be effective. I consists in going over from the general
functional representation of the object to its particular form.

Below we show the application of the described approach in solving the following temperature diagnostics
problem.

Results of measuring the temperature in a copper cylinder of length L = 0,046 m and diameter d = 0.0254
m are presented in [11]. The specimen was heated initially and then cooled in open air. It was determined by
measurements of the temperature of the environment that this quantity is constant and equals ugy = 300.6°K.

Tet us identify the parameters of the test object by this quantity of information, and let us also estimate
the nonuniformity of the distribution of its temperature field.

We seek the solution of the problem of interest to us in the domain of states reflecting the process of
free cooling of a body of high heat conductivity, This permits making the following assumptions. The coeffi-
cient of heat elimination is a nonincreasing smooth function. The thermophysical properties are constant in the
observed temperature rahge 320°K < u < 420°K, The thermal resistance of the rod is negligible. Installation
of the measurement system can result in local changes in the continuity of the specimen, which are not sub-
stantial in the volume of the whole rod.

To strengthen the limitations of the class of possible thermal states of the rod, we perform an initial
analysis by using a model with concentrated parameters. Neglecting the thermal resistance, we obtain

du 20
cp P int-s (thop — 1), t>>0, ul,_y= (1)

where u; =410.7°K is the initial value of the temperature being measured.

We seek the heat elimination coefficient «(t) in the form of the function h = 2w /cpR for which the poly-~
nomial approximation

p
= N 2
h -g:‘ ;¢ (2)
can be selected under the assumptions made, where —» < p; <  are coefficients to be determined,

Taking into account the lack of additional information about the nature of the quantities desired (whereupon
extension of the domain of allowable solutions is possible), we seek the unknown parameters by using the method
of regularization according to the following scheme:

inf Q s S . ;] a

el Il < 6 @
where a are the desired parameters, A is the domain of admissible solutions, @ is a stabilizing functional,
u% are observations, u is the solution of the model problem, and 6 =0.01 K is the level of consistency be-
tween the observations and the temperatures computed by means of the model, which is selected as the error
of the measurements,

The variational formulation (3) permits realization of a limitation on their variations in the case of insta~
bility of the identification because of minimization of the functional ©[a] which depends on the desired param-
eters a. As the results [12, 13] show, in selecting a stabilizing functional one should start from the require-
ment of strengthening the constraints imposed on the domain of allowable solutions of the inverse problem. In
this connection, stabilizers of the type of highest order generalized derivatives, allowable by the selected ap-
proximation of the desired quantities are used in all the cases considered below.

The stabilizing functional of the above-mentioned type has the form Q =2 for the function (2), Hence,
among the possible values of the coefficient —« < np < e a quantity with minimal modulus is selected under
the condition of best matching of the model temperature field to the given sample of observations.
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Let us note certain questions of the numerical realization of the identification algorithms used, The
variational regularization scheme (3) is reduced to an absolute programming problem by the method of penal-
ties. The penalty function has the form

F(a)= Qla] + Ky (a), (4)
where ¥ = 112_22( Iu? —ujl—~— 6 is the residual in the consistency conditions, and K is the penalty function (K > 0
=isn

ify >0but K =0if y= 0).

Determination of the coefficients a = { 7; }; =5,p of the model (1) by the method elucidated for p = 2 would
permit finding the values n, =2.914 h-1, 5, =—1.52 h=?%, 5, =0.375 h™3. The residual in the consistency con-
ditions would reach the value y; = 0.1845°K. A further successive increase in the degree of the polynomial (2)
would show the statistical insignificance of the recurrent change in the form of the desired function h(t) for
p = 6. The form of this function is shown in Fig. 1 for p =6. The magnitude of the residual is y, = 0.1842°K
in this case. The form of the desired function, found by meang of the finite-difference formula

6 8
hy = Ljgy — Uj—1 . ,j=1,n—1,
2 (L —Li_q) (ttay— 17 )

is presented for comparison with the results obtained in Fig. 1.

In order to estimate the level of the identification error and the modeling in the case considered above,
we make the passage to the other model that takes account of the radial heat distribution

cpau Pl d(rau O0<r<l, >0
— =0 — —|r—] r<l, ;
ot R r or ar) = )
) 5
Ulyo = Up==const, 0 <<r<1i;
A Ou
o (ul,_1—u — — =0, {>0.
(Ih_l cp)+R 6r s =

Since we do not know the values of the coefficients c, p, and A, as well as of the coordinate ry of the point of
temperature measurement u®, then we pose the problem of determining the parameters
cpR® _ 2R

=const, a,= L y=r1,

ay =

for the model (5). We approximate the coefficient a,(t) exactly as in the preceding case. We determine the tem-
perature field u(r, t) by Bessel interpolation of the mesh function in =u(rj, tj), 1 =0, 50, j =0, 100 found by the
finite-difference method.

With respect to the selection of the model (5) and its desired parameters, we note that expansion of the
states, as compared with the model (1), is characterized just by two constant parameters ¢; > 0 and 0= a5 =1,
here conserving the uniform form of the initial temperature distribution over the cylinder section.

The following values of the desired quantities were obtained as a result of identification. The coefficient
@4 turned out to equal 0.000793 h. Verification of this value by using handbook data [14] shows that the differ-
ence is 7.2% for ¢ = 38933/ (kg - °K), p = 8800 kg/m?, A =348.8 W/ (m - °K), The form of the functionh =
2a,/a4 is shown in Fig. 1. As can be seen, the values found by using models (1) and (5) are in satisfactory mu-
tual agreement. The maximum distinction does not exceed 6 %, of the running value,

Let us consider the analysis of determining the coordinate of the temperature measurement point in more
detail. A numerical investigation of the behavior of the penalty function (4) showed that it is responsive to
changes in the parameter a;. Consequently, the value a; = 0 was found by a coordinate-by-coordinate descent
from the initial value a(?f’) =1. Further variations of the coordinate of the measurement point during the search
for the minimum of the penalty function did not exceed the value 107 m. The final estimate for the nonuni-
formity of the radial temperature distribution of the rod shows that

0.04K << var [u(1, f) —u (0, #)] < 0.06K.
0<ILT
For the error level 6 = 0.01°K this quantity confirms the response of the penalty function F(a) to a change in the

parameter ag.
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Fig. 1. Determination of the heat elimination: 1} finite-difference
formula; 2) model (1), p =1; 3) model (1), p =6; 4) model (5),p=6. h,
h-%; t/96 sec.

Fig. 2, Initial temperature distribution in the segment 0 =z =, u, K,

Taking account of the thermal radiation

4 . A ou
@ (U, g~ tigy) - €0 (W1 — Uay) - R o r:i: , t>0

in the boundary condition showed the lack of significance of this factor.

Therefore, the passage to another model within the framework of the assumed class of test object states
confirmed the results obtained earlier and also permitted determination of new parameters and establishment
of the significance of such factors as the radial thermal flux and thermal radiation., However, improvement of
the consistency with observations as compared with the model (1) was not achieved. The residual turned out
to equal y, = 0.2413°K. Therefore, expansion of the description of the object states reflects the structure of
the effective factors insufficiently completely. Since the results obtained are inadequate to the setting up the
main source of modeling errors, we continue analyzing the object states by using other models.

Let us examine the boundary value problem

ou 25 o 20
—_— = ——(t—u,y, 0<<o<2m, t>0,
at RZ 0(,02 R ( a\) CP
Uly_o = 1y ==const, 0<<¢'<C 2m, (6)
: ou ou
Uloog = Upegm — = , £>0,
= N 0P Jomo 2] p=2mn

in which the nonuniformity is taken into account in the temperature field distribution over the circular coor-
dinate @ because of the dependence of the heat elimination @ = a/(¢p, t). We neglect the radial thermal flux and
consider the initial temperature distribution constant. Such a narrowing of the domain of admissible states
permits estimation of the significance of the circular nonuniformity of the heat elimination. The location of the
measurement system was taken as the origin of circular coordinate measurement, i.e., ¢ = 0. The quantities
a; = cpR?/A = const and oy, = aR/A are the desired parameters. The coefficient @, was approximated by the
linear polygon function

1 . . . . 1T, . , — @ — O
a: (9 1) = vy (Vi1 v T ) +‘4— (v v — v T Mﬁ__&L_F
P — Qi

oAt —t;

bi—ti

T . . ,
+ e (i — v vl —viT]) +-

e (0 vl v ) 2O e ) Gl )
4 (p; — Qi) (& —4iy)

PraKL O @ o <CE<Ey,

’

whose nodes vji = aq (e, tj), i=0,12,j =0, 4 are to be determined. The stabilizing function was selected in
the form
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Qlas] = T fT K%Y%— (%)2] dodt = 3 ( fir + L g+ *1—%'2]‘ + Sigi) (P: — @i_1) (&5 — Li-0)s
5 6 L\0® ot “4 3 3
where
fy Vi v — vl — v g = i e o S I
2(@; — 9i-1) 2(9: — Pi-1)
Gri— vi— it vl vl 5y vi—vi vl — o

2 (ti—15.1) ) 2t —ti)

The finite-difference mesh in = ulg;» tj) for solving the direct problem (6) was given with the number of nodes
i=0,50,j =0, 100,

Results of the identification {u, @, } at this stage of the analysis show the negligible deviations of the
temperature over the circular coordinafe

0.001K <C var | max u (g, {}— min u(g, 1) <<0.005 K,
0<IST O<Cp<2n 0<op<2m

as well as the weak dependence of the heat elimination on the coordinate ¢. The magnitude of the residual was

v4 = 0.1741°K. Improvement of the consistency as compared to model (1) is explained by the expansion of the

functional representation of the heat elimination since the values of the coefficient a, found by using the models

(5) and (6) differ insignificantly, This result shows the value of the performable regularization.

Terminating the analysis of the thermal state of the copper rod, by taking account of the preceding re-
sults we estimate the nonuniformity of the temperature distribution over the length of the specimen. To do this
we consider the model

ou A O

200
= — (U — ), 0Tz, 10,
P T o R U '

Ul_o=ty(2), 0Tz <1, )

Uly_g= 6y (f), ;1 =06,(), :>0.

In this case the domain of allowable states is expanded because of the variable boundary conditions ug(z) and
89,1(t). We seek them in the class of smooth functions. Relative to the thermophysical properties and conditions
of the heat elimination, it is assumed that they satisfy the assumptions made for the model (5). :

Taking into account the possibility of spoiling the wholeness of the rod in the axial direction because of
the disposition of the measurement system, we seek the solution of the inverse problem not over the whole length
of the rod but only over a part [ = 0.1I.,, We consider the ends of the estimation segment equidistant from the
temperature measurement points, i.e,, zp = 0,5. We approximate the unknown functions uy(z) and 90,1(1;) by cubic
splines [15]. This selection is made with the local properties of splines and the absence of data on the nature
of the boundary conditions in the experiment taken into account. We give the stabilizing functional in the form

(o N T\ (%)
Qi Ool = | ( = )dz+j [( = >+( — ) ]dt.

0 Q

We determine the temperature field u(z, t) by Bessel interpolation of the mesh function w{ =u(zi, tj), i=0,50,
j =0, 100.

We give the parameters a, = cpl¥ A and a, = 2¢%%/AR from the results obtained by using the model (5),
and we determine the boundary conditions {ug 6y 6,4} in the set of smooth positive-definite functions. Reach-
ing the magnitude of the residual y; = 4.14°K indicates the inadequacy of the identification in the model (7) of
just the boundary condition. Expansion of the number of desired quantities because of the coefficient @, = const
permitted improvement of the consistency to y, = 0.31°K, The laws found for the temperature variation are
shown in Figs. 2 and 3. We turn attention to the nonuniformity of the initial distribution. Since its limitation by
a constant value in the preceding cases permitted satisfactory identification, then extending the model repre-
sentation of the thermal state of the rod with axial heat conductivity taken into account shows the significance
of the change in object properties in this area. This is evidently caused by the method of obtaining the observa-
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Fig. 3. Rod cooling in the estimation segment
0=z=1 1) u(z t)y =4 2) ulz, t)], =z 3)
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tion sample. Further defailing of the description of the thermal state should be performed with the properties
of the rod and the measurement system taken into account in a complex manner. From this viewpoint, the
necessity of a successive increase in the number of desired parameters in model (7) is eliminated because of
the additional refinement of the heat elimination «(t).

The results obtained permit establishment of the main source of error in the modeling and its significance
in the cases congidered. For the model (1) the influence of installing the measurement system along the rod
axis is minimal, while a local change in the continuity of the specimen for the models (5)-(7) causes a certain
ditference in the coefficient a; from the analogous value obtained by handbook data. This distinction grows with
detailing of the description of the thermal state performed within the framework of the model of a continuous
rod. Among the other methodological errors, the absence of taking account of the nonlinearity in the thermo-
physical properties and the inhomogeneity of the heat distribution can be taken into account. But the satisfactory
consistency with observations and the compatibility of the estimates of parameters of the same kind, obtained
in different identification stages, show that the errors of the models used do not cause significant errors in the
quantities found.

Therefore, the theory developed for inverse problems can be extended to the case of absence of a suffi-
cient quantity of a priori information about the form of the adequate model of the process. For such situations,
the joint solution of a whole set of inverse problems in which a conception reflecting the proposed structure of
the effective factors is included, turns out to be effective. Its operator mode can be given by a family of dif-
ferential equations, say, whose composition is determined by information about the qualitative properties of the
object of investigation. An estimate of the identification error hecause of modeling errors can be made on the
basis of a comparative analysis of the results of solving different inverse problems obtained by uging the very
same initial data. The method proposed for processing the results of experiment permitted realization of an
estimate of the state of the object and the establishment of the significance of the effective factors within the
limited volume of the observation sample.

NOTATION

u, temperature field; ¢, specific heat; p, density; «, heat elimination; ¢, emissivity; ¢, Stefan—Boltz-
mann constant; ugy, temperature of the environment; ug, initial {emperature distribution; 6, 4, boundary tem-
peratures; T, upper bound of the observation time; R, rod radius; I, estimation segment; r, ¢, zp, coor-
dinates of the temperature measurement point; n, sample volume; and f, g, h, 4, s, auxiliary quantities,

LITERATURE CITED

i. M. M. Lavrent'ev, V. G. Vasil'ev, and V. G. Romanov, Multidimensional Inverse Problems for Differ-
ential Equations [in Russian], Nauka, Novosibirsk (1970).

2. A. G. Tempkin, Inverse Heat Conductivity Methods [in Russian], Energiya, Moscow (1973).

3. Yu. E. Anikonov, Certain Methods of Investigation Multidimensional Inverse Problems for Differential
Equations [in Russian], Nauka, Novosibirsk (1978).

4, O. M, Alifanov, Identification of Heat Transfer Processes of Flying Vehicles: Introduction to the Theory
of Inverse Heat Transfer Problems [in Russian], Mashinostroenie, Moscow (1979).

1081



10.
11.

12,

13.

14.

15.

1082

Yu. V. Linnik, Method of Least Squares and Principles of a Mathematical Statistics Theory of Processing
Observations [in Russian], Fizmatgiz, Moscow (1962).

L. Janoshy, Theory and Practice of Processing Measurement Results {Russian translation], Mir, Moscow
(1968).

V. N. Vapnik, Restoration of Dependences of Empirical Data [in Russian], Nauka, Moscow (1979).

A, N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrect Problems [in Russian], Nauka, Moscow
(1979).

V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Incorrect Problems and Its Application
[in Russian], Nauka, Moscow (1978).

P. Eichhoff, Principles of Control System Identification [Russian translation], Mir, Moscow (1975).

J. Beck, "Sequential estimation of thermal parameters," Trans. ASME, Heat Transfer, 99, No. 2, 170-180
(1977).

M. R. Romanovskii, *On the regularization of inverse problems," Teplofiz. Vys. Temp., 18, No. 1, 152-157
(1980). _

M. R. Romanovskii, "Regularization of inverse problems by the scheme of particular consistency with
elements of a set of observations," Inzh.~Fiz. Zh., 42, No. 1, 110-118 (1982).

V. N. Yurenev and P. D. Lebedev, Thermal Engineering Handbook [in Russianl, Vol. 2, Energiya, Moscow
{1976).

J. Alberg, E, Nielson, and J. Walsh, Theory of Splines and Its Application [Russian translation], Mir,
Moscow (1976).



